
Chapter # Chapter # 1010
Semantic Semantic AnalyzerAnalyzer
Chapter # Chapter # 1010
Semantic Semantic AnalyzerAnalyzer

1

Semantic Semantic AnalyzerAnalyzerSemantic Semantic AnalyzerAnalyzer

Dr. Dr. ShaukatShaukat AliAli

Department of Computer ScienceDepartment of Computer Science

University of PeshawarUniversity of Peshawar

Syntax versus Semantics

• Syntax
– Verifies that the program consists of tokens arranged in

a syntactically valid combination

• Semantics
– Form a sensible set of instructions in the programming

language

2

language

• Convention is that syntax is what can be specified
by CFG

• Doesn't match intuition - some things that seem
to be not definable in CFG
– Example - number of arguments in function call

•

Syntax versus Semantics

• For a program to be semantically valid, all variable
s, functions, classes, etc. must be properly defined,
expressions and variables must be used in ways
that respect the type system, access control must be
respected, and so forth.

• Static semantics - can be analyzed at compile-time• Static semantics - can be analyzed at compile-time

• Dynamic semantics - analyzed at runtime
– Division by zero and Array bounds checks

• Not a clear distinction or boundary

• Theory says that while some problems can be
found at compile-time, not all can

• So, must have runtime semantic checks 3

Type Checking

• Type checking is the process of verifying that each op
eration executed in a program respects the type syste
m of the language.
– This generally means that all operands in any

expression are of appropriate types and number

• For example : x = a % b;• For example : x = a % b;
– % operation requirement is that both of the operands must

be of the same type of integer

– If one is integer and another is of some other data type, it
means that % operation is applied to incompatible operands

• If a problem is found, e.g., one tries to add a char
pointer to a double in C, we encounter a type error.

4

Type Checking

• A language is considered strongly typed
if each and every type error is detected during comp
-ilation.

• Type checking can be done during compilation,
during execution, or divided across both.

• Types of type checking• Types of type checking
– Static type checking

– Dynamic type checking

5

Static Type Checking

• Static type checking is done at compile time.

• The information the type checker needs is obtained v
ia declarations and stored in a master symbol table. A
fter this information is collected, the types involved i
n each operation are checked.

• It is very difficult for a language that only does static• It is very difficult for a language that only does static
type checking to meet the full definition of strongly

typed.

• For example, if a and b
are of type int and we assign very large values to the
m, a * b may not be in the acceptable range of ints.

6

Dynamic Type Checking

• Dynamic type checking is implemented by including
type information for each data location at run time
– For example, a variable of type double would contain bot

h the actual double value and some kind of tag indicating
"double type”

– The execution of any operation begins by first checking
these type tags

– The operation is performed only if everything checks
out. Otherwise, a type error occurs and usually halts exec
ution

• For example, when an add operation is invoked, it first examines
the type tags of the two operands to ensure they are compatible.

– Another example is array out of bound

7

Dynamic Type Checking

• Normally done in languages that do not require
prior data type declaration of variables at compile
time
– For example LISP, JavaScript etc.

• Dynamic type checking clearly comes with a run • Dynamic type checking clearly comes with a run
time performance penalty, but it usually much mo
re difficult to subvert and can report errors that
are not possible to detect at compile time.

8

Implicit Type Conversion

• Many compilers have built-in functionality for cor
recting the simplest of type errors.
Implicit type conversion, or coercion, is when a
compiler finds a type error and then changes the
type of the variable to an appropriate type.

• This happens in C, for example, when an addition • This happens in C, for example, when an addition
operation is performed on a mix of integer and
floating point values.
– The integer values are implicitly promoted before the a

ddition is performed.

9

Implicit Type Conversion

• Other languages are much stricter about type coer
cion.
– Ada and Pascal, for example, provide almost no autom

atic coercions, requiring the programmer to take explic
it actions to convert between various numeric types.

• The question of whether to provide a coercion ca• The question of whether to provide a coercion ca
pability or not is controversial.

• Coercions can free a programmer from worrying
about details, but they can also hide serious errors
that might otherwise have popped up during com
pilation.

10

Types of Static Type Checking

• Four types of static type checks
– Type checks

– Flow of control checking

– Uniqueness Checking

– Name related checks

• Type Checks• Type Checks
– To make it sure that the operator is applied to

compatible operands

– A Compiler must report an error if an operator is
applied to incompatible operands

– For example : An integer variable is added with a
character variable

11

Example

int sum;

float a, b;

Sum = a + b;

Product = a * b;

If a.type = int && b.type = int thenIf a.type = int && b.type = int then

Sum.type = int

Else error

If a.type = float && b.type = float then

Sum.type = float

Else error

12

Types of Static Type Checking

• Flow of control checking
– Checking of branching statements

• GOTO, BREAK, and CONTINUE etc.

• If branching location exists or not

– If it does not exist, then error is reported

• Uniqueness Checking
– Make it sure unique declaration of variable in a scope

• No multiple declaration of the same variable in the same
scope must exist

– No two variables with the same name in a scope

13

Types of Static Type Checking

• Name related checks
– If the same name appears both in the beginning and the

ending of a construct

– It is the duty of compiler to make it sure that the same
name appears at both the places

– Example– Example
• Unary statement

– Unit++

– Unit = unit +1

14

Coercions

• In case of type mismatch
– Incompatible operands at the two side s of the an

operator
• The compiler may perform implicit type conversion

• Called Coercions

• Coercion may occur• Coercion may occur
– Incompatibility in assignment statement

– Incompatible operands of an arithmetic operator

Lvalue Rvalue

Flaot = int

15

Coercions

• In the first case the type of the RHS is coercioned
to the type of the LHS

• In the second case the type having less no of bits
is converted into the type having a greater no of
bits

• Example in C language char+int• Example in C language char+int
– Char is converted into int

– ASCII value of the character is added

16

Type Checking Rules for Coercions

E E1 + E2

E.Type = if E1.type == int and E2.type == int then
int

Else if E1.type == int and E2.type == real then real

Else if E1.type == real and E2.type == int then real

Else if E1.type == real and E2.type == real then
real

Else type error

17

Designing a Type Checker

• When designing a type checker for a compiler,
here’s the process:
– Identify the types that are available in the language

– Identify the language constructs that have types
associated with them

– Identify the semantic rules for the language– Identify the semantic rules for the language

• we will present it in the context of Decaf
– Decaf is a somewhat strongly typed language like C

• Since declarations of all variables are required at compile
time.

• In Decaf, we have base types (int, double, bool, string),and
compound types (arrays, classes, interfaces).

18

Designing a Type Checker

• We need to identify the language constructs that
have types associated with them.

• In Decaf, here are some of the relevant language
constructs:
– Constants:

• Obviously, every constant has an associated type. A scanner • Obviously, every constant has an associated type. A scanner
tells us these types as well as the associated lexeme.

– Variables:
• All variables (global, local, and instance) must have a

declared type of one of the base types or the supported
compound types.

– Functions:
• Functions have a return type, and each parameter in the

function definition has a type, as does each argument in a
function call.

19

Designing a Type Checker

– Expressions:
• An expression can be a constant, variable, function call, or

some operator (binary or unary) applied to expressions.

• Each of the various expressions have a type based on the type
of the constant, variable, return type of the function, or type of
operands.

• Listing the semantic rules that govern what types • Listing the semantic rules that govern what types
are allowable in the various language constructs
– In Decaf, the operand to a unary minus must either be

double or int, the expression used in a loop test must
be of bool type, and so on.

– There are also general rules, not just a specific
construct, such as all variables must be declared, all
classes are global, and so on.

20

Designing a Type Checker

• These three things together (the types, the
relevant constructs, and the rules) define a type
system for a language.

• Once we have a type system, we can implement a
type checker as part of the semantic analysis
phase in a compiler.phase in a compiler.

21

Implementation

• The first step in implementing a type checker for
a compiler is to record type information for each
identifier
– All a scanner knows is the name of the identifier so

that it what is passed to the parser

– Typically, the parser will create some sort of – Typically, the parser will create some sort of
"declaration" record for each identifier after parsing.
Its declaration record to be stored for later.

– On encountering uses of that identifier, the semantic
analyzer can lookup that name and find the matching
declaration or report error when no declaration has
been found.

22

Implementation

– Let’s consider an example. In Decaf, we have the
following production rules that are used to parse a
variable declaration

– Consider the following variable declaration

int a;

double b;

23

Implementation

– The scanner records the name for an identifier

– The parser uses the grammar to parse variable
declaration

• The type associated with the Type symbol (passed up from
the Type production)

• Name associated with the identifier symbol (passed from the
scanner)scanner)

• Therefore, the parser records new variable declaration,
declaring that identifier to be of that type, in a symbol table
for lookup later on

• Once we have the type information stored away
and easily accessible, we use it to check that the
program follows the general semantic rules and
the specific ones concerning the language
constructs 24

Implementation

• In parsing an expression such as x + 7
– Apply the LValue and Constant productions to the

two sides respectively

– We need the identifier information for the variable on
the left and the constant from the right

– 25

Implementation

– When we are handling the Expr + Expr production,
we examine the type of each operand to determine if it
is appropriate in this context

• Which in Decaf, means the two operands must be both int or
both double

– The type information will be stored in the symbol table
• The X would of type int stored in declaration record in the • The X would of type int stored in declaration record in the

symbol table by the parser.

• The 7 would be of type int specified in the production rules
and stored in the symbol table by the parser.

– The Decaf semantic analyzer typer checker will lookup
the symbol table for the type values

• Which is both int in this case and satisfies the semantic rules
of the language.

26

• End of Chapter # 10

27

